Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

16-[3-Methoxy-4-(2-piperidin-1-yl-ethoxy)benzylidene]-17-oxoandrost-$5-e n-3 \beta$-yl acetate monohydrate

S. Thamotharan, ${ }^{\text {a }}$ V. Parthasarathi, ${ }^{\text {a* }}$ Ranju Gupta, ${ }^{\text {b }}$ Sheetal Guleria, ${ }^{\text {b }}$ D. P. Jindal ${ }^{\text {b }} \boldsymbol{+}$ and Anthony Linden ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, ${ }^{\text {b }}$ University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014 , India, and ${ }^{\text {c Institute of Organic Chemistry, University of Zürich, }}$ Winterthurerstrasse 190, CH-8057 Zürich, Switzerland Correspondence e-mail: vpsarati@yahoo.com

Received 17 October 2002
Accepted 4 November 2002
Online 26 November 2002
The title compound, $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{NO}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$, has the outer two sixmembered rings of the steroid nucleus in chair conformations. The central ring B of the steroid nucleus is in an $8 \beta, 9 \alpha$-halfchair conformation, while ring D of the steroid adopts a slightly distorted $13 \beta, 14 \alpha$-half-chair conformation. The piperidine ring is in a chair conformation. The methoxybenzylidene moiety has an E configuration with respect to the carbonyl group at position 17. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link the steroid and water molecules into chains which run parallel to the b axis.

Comment

The present study of the title compound, (I), is the 10th in our series of X-ray crystal structure analyses of new synthetic androstene derivatives (Vasuki et al., 2001; Hema et al., 2002; Vasuki, Parthasarathi, Ramamurthi, Jindal \& Dubey, 2002; Vasuki, Parthasarathi, Ramamurthi, Dubey \& Jindal, 2002a,b,c; Vasuki, Thamotharan, Parthasarathi, Ramamurthi, Jindal \& Dubey, 2002; Vasuki, Thamotharan, Parthasarathi, Ramamurthi, Dubey \& Jindal, 2002; Vasuki, Parthasarathi, Ramamurthi, Piplani \& Jindal, 2002). In our studies, we are particularly interested in the conformational flexibilities of the steroids resulting from variations in the substituents at the C3, C 16 and C17 positions.

The crystals of (I) are enantiomerically pure. However, due to the absence of significant anomalous scatterers in the compound, the absolute configuration of the molecule has not been determined by the X-ray diffraction experiment. The enantiomer used in the refinement was assigned to correspond with the configuration of the known chiral centres in a precursor molecule which remained unchanged during the synthesis of (I).

[^0]Fig. 1 shows the asymmetric unit of (I) with the steroid numbering scheme and ring labels. Among the few conformational options, both methyl groups of the steroid nucleus adopt the expected staggered arrangements. The geometry at both the B / C and C / D ring junctions is trans. The distance between the terminal C atoms, C39 and C34, is 20.213 (3) \AA. The C5-C6 distance of 1.332 (3) \AA confirms the presence of a localized double bond at this position (Kálmán et al., 1992; Vasuki et al., 2001; Hema et al., 2002; Vasuki, Parthasarathi, Ramamurthi, Dubey \& Jindal, 2002a,b; Vasuki, Thamotharan, Parthasarathi, Ramamurthi, Dubey \& Jindal, 2002). Rings A and C are slightly flattened, the mean values of their ring torsion angles being 53.68 (8) and $54.53(8)^{\circ}$, respectively. Both ring conformations are close to that of a chair, as shown by the values of the Cremer \& Pople (1975) puckering parameters [ring $A: Q=0.548$ (2) $\AA, \theta=5.7$ (2) $)^{\circ}$ and $\varphi=85(2)^{\circ}$ for the atom sequence $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$; ring $C: Q=$ 0.568 (2) $\AA, \theta=11.9(2)^{\circ}$ and $\varphi=266.4(10)^{\circ}$ for the atom sequence $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14]$. Thus, the presence of the acetoxy group bonded to atom C3 does not disturb the usual chair conformation of ring A of the steroid nucleus; the 3β-acetoxy group is planar. The $\mathrm{C} 3-\mathrm{O} 37$ bond is oriented equatorially and is (-)antiperiplanar to the $\mathrm{C} 3-\mathrm{C} 4$ bond. The dihedral angle between the planes of the acetoxy group and the steroid nucleus is $83.45(12)^{\circ}$.

(I)

Due to the $\mathrm{C} 5=\mathrm{C} 6$ double bond, the environment of atom C5 is planar, and hence ring B adopts the $8 \beta, 9 \alpha$-half-chair conformation generally found in steroids containing a $\mathrm{C} 5=\mathrm{C} 6$ double bond (Caira et al., 1995; Andrade et al., 2001; Vasuki et al., 2001; Hema et al., 2002; Vasuki, Parthasarathi, Ramamurthi, Dubey \& Jindal, 2002a,b; Vasuki, Thamotharan, Parthasarathi, Ramamurthi, Dubey \& Jindal, 2002); puckering parameters $Q=0.494$ (2) $\AA, \theta=51.7(2)^{\circ}$ and $\varphi=209.2(3)^{\circ}$ for the atom sequence $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$. The fivemembered ring D exhibits a distorted $13 \beta, 14 \alpha$-half-chair conformation; $\Delta=3.9^{\circ}$ and $\varphi_{m}=38.8(1)^{\circ}$ for the atom sequence $\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$ (Altona et al., 1968). The piperidine ring adopts a chair conformation, as is evident from the puckering parameters; $Q=0.576$ (2) $\AA, \theta=4.6(2)^{\circ}$ and $\varphi=345(3)^{\circ}$ for the atom sequence N31-C32-C33$\mathrm{C} 34-\mathrm{C} 35-\mathrm{C} 36$. Atoms N31 and C34 are on opposite sides of the C32/C33/C35/C36 plane and displaced from it by 0.691 (2) and 0.649 (3) \AA, respectively.

The $\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 20-\mathrm{C} 21$ torsion angle of 172.55 (17) ${ }^{\circ}$ indicates that the methoxybenzylidene moiety has an E configuration with respect to the carbonyl group at position 17. The $\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 20$ exocyclic angle of $130.56(18)^{\circ}$ is significantly larger than the normal value of 120°, and this may

Figure 1
View of the asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.

Figure 2
The molecular packing in (I), projected down the a axis, showing the hydrogen-bonding scheme. H atoms bonded to C atoms have been omitted for clarity.
be due to steric repulsion between atoms $\mathrm{H} 15 A$ and H 22 $(2.31 \AA)$, and between atoms $\mathrm{H} 15 B$ and $\mathrm{H} 22(2.12 \AA)$.

The pseudo-torsion angle $\mathrm{C} 19-\mathrm{C} 10 \cdots \mathrm{C} 13-\mathrm{C} 18$ has a value of $12.53(15)^{\circ}$. The steroid nucleus and the average plane of the piperidine ring are oriented at angles of 6.38 (4) and 68.93 (8) ${ }^{\circ}$, respectively, with respect to the 3-methoxybenzyl-
idene ring. In (I), the angles $\mathrm{C} 8-\mathrm{C} 14-\mathrm{C} 15$ of $118.63(15)^{\circ}$ and $\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 17$ of $100.81(15)^{\circ}$ are close to the expected values of 119.3 and 99.2°, respectively (Duax et al., 1976). [In Hema et al. (2002), we inadvertently gave the upper limit for these angles, instead of the expected values.]

The water molecule forms an intermolecular hydrogen bond with the N atom of the piperidine ring of a neighbouring steroid molecule, as well as with the carbonyl O atom of the ester group of a different neighbouring steroid molecule (Table 1). These interactions link the steroid and water molecules alternately into chains, which run parallel to the b axis and have a binary graph-set motif (Bernstein et al., 1995) of $C_{2}^{2}(24)$ (Fig. 2).

Experimental

A mixture of 16-[3-methoxy-4-(2-piperidin-1-ylethoxy)benzylidene]-17-oxo-5-androsten- 3β-ol $(0.5 \mathrm{~g}, \quad 0.868 \mathrm{mmol})$, acetic anhydride $(1.0 \mathrm{ml})$ and dry pyridine $(2.0 \mathrm{ml})$ was heated on a steam bath for 2 h . The contents of the reaction mixture were then poured into ice-cold water and basified with liquid ammonia. The precipitate obtained was filtered off, washed with water, dried and crystallized from hexane ($333-353 \mathrm{~K}$), affording crystals of the title compound (institution code: DPJ-RG-1111) (yield: $0.38 \mathrm{~g}, 70.5 \%$; m.p. 399-401 K).

Crystal data

$\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{NO}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$
$D_{x}=1.226 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=593.78$
Monoclinic, $P 2_{1}$
$a=6.1726$ (1) A
$b=14.9068$ (2) \AA
$c=17.6465$ (3) \AA
$\beta=97.724$ (1) ${ }^{\circ}$
$V=1608.99$ (4) \AA^{3}
$Z=2$

Mo K α radiation
Cell parameters from 4884 reflections
$\theta=2.0-30.0^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=160$ (2) K
Tablet, colourless
$0.25 \times 0.25 \times 0.15 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer φ and ω scans with κ offsets 42238 measured reflections 4878 independent reflections 3793 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.062 \\
& \theta_{\max }=30.0^{\circ} \\
& h=0 \rightarrow 8 \\
& k=-20 \rightarrow 20 \\
& l=-24 \rightarrow 24
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0606 P)^{2}\right.
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.105$
$S=1.03$
4878 reflections
401 parameters
H atoms treated by a mixture of independent and constrained refinement

SG thanks UGC, India, for financial assistance. RG thanks Cipla Ltd, Mumbai, for the free supply of steroids. ST thanks the X-ray Crystallography Facility, Institute of Organic Chemistry, University of Zürich, Switzerland, for providing access to the facility during his visit.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1582). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.
Andrade, L. C. R., Paixão, J. A., de Almeida, M. J. M., Martins, R. M. L. M., Soares, H. I. M., Morais, G. J. R., Moreno, M. J. S. M., Sá e Melo., M. L. \& Campos Neves, A. S. (2001). Acta Cryst. C57, 587-589.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Caira, M. R., Guillory, K. J. \& Chang, L. (1995). J. Chem. Crystallogr. 25, 393400.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Duax, W. L., Weeks, C. M. \& Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel \& N. Allinger, pp. 294-331. New York: John Wiley.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Flack, H. D. \& Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
Hema, R., Thamotharan, S., Parthasarathi, V., Dubey, S. \& Jindal, D. P. (2002). Acta Cryst. C58, o421-o423.
Kálmán, A., Argay, G., Živanov-Stakić, D. \& Ribár, B. (1992). Acta Cryst. B48, 812-819.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2002). PLATON. University of Utrecht, The Netherlands.
Vasuki, G., Parthasarathi, V., Ramamurthi, K., Dubey, S. \& Jindal, D. P. (2002a). Acta Cryst. E58, o355-o356.
Vasuki, G., Parthasarathi, V., Ramamurthi, K., Dubey, S. \& Jindal, D. P. (2002b). Acta Cryst. E58, o1224-o1226.
Vasuki, G., Parthasarathi, V., Ramamurthi, K., Dubey, S. \& Jindal, D. P. (2002c). Acta Cryst. E58, o1359-o1360.
Vasuki, G., Parthasarathi, V., Ramamurthi, K., Jindal, D. P. \& Dubey, S. (2001). Acta Cryst. C57, 1062-1063.
Vasuki, G., Parthasarathi, V., Ramamurthi, K., Jindal, D. P. \& Dubey, S. (2002). Acta Cryst. C58, o162-o163.
Vasuki, G., Parthasarathi, V., Ramamurthi, K., Piplani, P. \& Jindal, D. P. (2002). Acta Cryst. E58, o1361-o1362.
Vasuki, G., Thamotharan, S., Parthasarathi, V., Ramamurthi, K., Dubey, S. \& Jindal, D. P. (2002). Acta Cryst. C58, o598-o599.
Vasuki, G., Thamotharan, S., Parthasarathi, V., Ramamurthi, K., Jindal, D. P. \& Dubey, S. (2002). Acta Cryst. E58, o753-o755.

[^0]: \dagger Deceased.

